
'Doubled' generalized Landau–Lifshitz hierarchies and special quasigraded Lie algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 7755

(http://iopscience.iop.org/0305-4470/37/31/008)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/31
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 7755–7768 PII: S0305-4470(04)77903-2

‘Doubled’ generalized Landau–Lifshitz hierarchies
and special quasigraded Lie algebras

T Skrypnyk

Bogoliubov Institute for Theoretical Physics of NASU, Institute of Mathematics of NASU,
Metrologichna st. 14-b, Kiev 03143, Ukraine

E-mail: tskrypnyk@imath.kiev.ua

Received 17 March 2004, in final form 8 June 2004
Published 21 July 2004
Online at stacks.iop.org/JPhysA/37/7755
doi:10.1088/0305-4470/37/31/008

Abstract
Using special quasigraded Lie algebras we obtain new hierarchies of integrable
nonlinear vector equations admitting zero-curvature representations. Among
them the most interesting is an extension of the generalized Landau–Lifshitz
hierarchy called the ‘doubled’ generalized Landau–Lifshitz hierarchy. This
hierarchy can also be interpreted as an anisotropic vector generalization of
‘modified’ sine–Gordon hierarchy or as a very special vector generalization of
so(3) anisotropic chiral field hierarchy.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.30.Ik, 02.30.Jr

1. Introduction

Integrability of equations of (1 + 1)-field theory and condensed matter physics is based on the
possibility to represent them in the form of the so-called zero-curvature equations [3, 1]:

∂U(x, t, λ)

∂t
− ∂V (x, t, λ)

∂x
+ [U(x, t, λ), V (x, t, λ)] = 0. (1)

The most productive interpretation of zero-curvature equations is achieved (see [2, 7]) if one
treats them as a consistency condition for a set of commuting Hamiltonian flows on a dual
space to some infinite-dimensional Lie algebra g̃ of matrix-valued function of λ written in the
Euler–Arnold (generalized Lax) form:

∂L(λ)

∂tl
= ad∗

∇Il (L(λ))L(λ),
∂L(λ)

∂tk
= ad∗

∇Ik(L(λ))L(λ), (2)

where L(λ) ∈ g̃ ∗ is the generic element of the dual space, ∇Ik(L(λ)) ∈ g̃ is the algebra-
valued gradient of Ik(L(λ)) and the ‘Hamiltonians’ Ik(L(λ)), Il(L(λ)) belong to the set
mutually commuting with respect to the natural Lie–Poisson bracket functions on g̃ ∗. The
consistency condition of two commuting flows given by equations (2) yields equation (1) with
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U ≡ ∇Ik, V ≡ ∇Il, tk ≡ x, tl ≡ t . In such a way, we obtain a lot of equations in partial
derivatives that are indexed by two commuting Hamiltonians Ik and Il . The set of equations
(1) with fixed index k and all indices l constitute the so-called ‘integrable hierarchy’. Hence,
in order to construct new integrable hierarchies in the framework of the described approach
it is necessary to have some infinite-dimensional Lie algebra g̃ possessing an infinite set of
mutually commuting Hamiltonians {Ik} on its dual space. The main method that provides
such a set is the famous Kostant–Adler scheme and its extensions [6, 2]. The main ingredient
of this scheme is the existence of the decomposition of the algebra g̃ into the sum of two
subalgebras: g̃ = g̃+ + g̃−.

Although the above described approach was originally based on employing the graded
loop algebras L(g) = g ⊗ P(λ, λ−1) [2, 7] that possess decompositions into sums of two
subalgebras, in the papers [8, 9] it was shown that a special Lie algebra gE living on the
elliptic curve E also possesses the decomposition gE = g+

E + g
−
E and can be used in order to

produce integrable systems. In our papers [13–15], we have generalized this construction
onto the case of special quasigraded Lie algebras gH living on the algebraic curve H. With
their help we have obtained new integrable Hamiltonian systems (both finite and infinite
dimensional) [14, 15]. In papers [16–18], we gave a Lie algebraic explanation of our previous
semi-geometric construction of the Lie algebras gH. More explicitly, we have constructed a
family of quasigraded Lie algebras gA parametrized by some numerical matrices A, such that
loop algebras L(g) correspond to the case A ≡ 0 and quasigraded Lie algebras gH to the case
A ∈ Diag(n).

In the present paper, we generalize construction of [16–18] introducing even larger family
of quasigraded Lie algebras g̃A1,A2 numbered by two numerical matrices A1 and A2 to which
Kostant–Adler scheme may be applied. A family of Lie algebras g̃A (see [16–18]) is embedded
into the family of Lie algebras g̃A1,A2 as the algebras g̃1,A. We show that three types of integrable
hierarchies are associated with the Lie algebras g̃A1,A2 : two small hierarchies are associated
with algebras g̃

±
A1,A2

and a large hierarchy is associated with the Lie algebra g̃A1,A2 . We show
that in the case when both matrices Ai are degenerate, the algebras g̃A1,A2 and g̃A are not
isomorphic as quasigraded Lie algebras. This means that integrable hierarchies associated
with g̃A1,A2 such that det Ai = 0 are not equivalent to the integrable hierarchies associated with
g̃A (see [15, 17, 18]). Moreover, we show that when the matrices Ai have the same matrix rank
the subalgebras g̃+

A1,A2
and g̃

−
A1,A2

are isomorphic, and the corresponding integrable hierarchies
are also equivalent. That is why a ‘large’ integrable hierarchy associated with the whole
Lie algebra g̃A1,A2 could be viewed as the ‘double’ of integrable hierarchy associated with
g̃

±
A1,A2

. The ‘doubling’ consists in adding ‘negative’ flows and new dynamical variables to the
integrable hierarchy associated with g̃

±
A1,A2

.
We consider these hierarchies in the case g = so(n) and rank Ai = n − 1 in detail.

We show that the integrable hierarchy associated with s̃o(n)
±
A1,A2

coincides with the (n − 1)-
component vector generalization of the ordinary three-component Landau–Lifshitz hierarchy.
For n > 4, this hierarchy was first obtained in [12] using the technique of ‘dressing’ and Lie
algebra of formal power series. The simplest equation of this hierarchy has the form

∂
−→
s

∂t
= ∂

∂x

(
∂2−→s
∂x2

+
3

2

(
∂
−→
s

∂x
,
∂
−→
s

∂x

)
−→
s

)
+

3

2
(
−→
s , J

−→
s )

∂
−→
s

∂x
(3)

where
−→
s is the (n − 1)-component vector and the tensor of anisotropy J is expressed via A1

and A2.
The ‘double’ of the generalized Landau–Lifshitz hierarchy is the ‘large’ integrable

hierarchy associated with s̃o(n)A1,A2
. It is the 2(n−1)-component hierarchy of vector equations
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satisfying two additional scalar constraints. The simplest equation of this hierarchy coincides
with the two (n − 1)-component vector differential equations of the first order. We show
that for these equations two scalar constraints are easily solved and as a result we obtain two
nonlinear (n − 2)-component vector equations of the following form:

∂x+

−→
s − = (c− − (

−→
s −,

−→
s −))1/2Ĵ 1/2−→s + (4)

∂x−
−→
s + = (c+ − (

−→
s +,

−→
s +))

1/2Ĵ−1/2−→s − (5)

where
−→
s ± are the (n − 2)-component vectors, c± are the arbitrary constants and anisotropy

matrix J is connected with matrices Ai in a simple way (see section 3.4).
Equations (4) and (5) are, in a sense, the ‘first negative equation’ or a ‘first negative flow’

of the generalized L–L hierarchy,
−→
s + are (n − 2)-independent components of the (n − 1)-

component vector of the dynamical variables:
−→
s = (s1,

−→
s +), x+ ≡ x is the space coordinate

and x− is the first ‘negative’ time.
It is necessary to note that in the n = 3 case equations (4) and (5) are equivalent to the

‘modified sine–Gordon’ equation [19, 20] and in the n = 4 case to the so(3) anisotropic chiral
field equations [21].

The structure of this paper is as follows: in section 2 we introduce algebras g̃A1,A2 and
describe their properties. In section 3 we obtain integrable hierarchies associated with the Lie
algebras g̃A1,A2 and their subalgebras g̃

±
A1,A2

. In subsection 3.4 we consider the examples of
this construction: the generalized Landau–Lifshitz hierarchy and its ‘double’.

2. K–A admissible quasigraded Lie algebras

2.1. Lie algebras g̃A1,A2

Let g be a classical matrix Lie algebra of the type gl(n), so(n) and sp(n) over the field of
the complex or real numbers. We will realize the algebra so(n) as the algebra of skew-
symmetric matrices: so(n) = {X ∈ gl(n)|X = −X�} and the algebra sp(n) as the following
matrix algebra: sp(n) = {X ∈ gl(n)|X = sX�s}, where n is an even number, s ∈ so(n) and
s2 = −1.

Let us introduce the new Lie bracket into the loop space L(g) = g ⊗ Pol(λ, λ−1):

[X(λ), Y (λ)] = [X(λ), Y (λ)]A1 − λ[X(λ), Y (λ)]A2 (6)

where X(λ), Y (λ) ∈ g ⊗ Pol(λ, λ−1), Pol(λ, λ−1) is the associative algebra of polynomial
functions in λ and λ−1, Ai are the numerical n × n matrices and [X, Y ]Ai

= XAiY − YAiX.
Brackets [X, Y ]Ai

= XAiY − YAiX have arisen in the theory of consistent Poisson
brackets on the finite-dimensional Lie algebras g [10, 11]. In this paper, we use them in order
to construct a new Lie bracket on the infinite-dimensional space g ⊗ Pol(λ, λ−1) (see also
[16]).

The following proposition holds.

Proposition 2.1. Let the numerical n × n matrices Ai, i = 1, 2 have the following form:

(1) Ai is arbitrary for g = gl(n),
(2) Ai = A�

i for g = so(n),
(3) Ai = −sA�

i s for g = sp(n).
Then bracket (6) is a correctly defined Lie bracket on g ⊗ Pol(λ, λ−1).

Remark 1. Matrices A1 and A2 are subjected only to the conditions of proposition 2.1 and
are arbitrary otherwise. In particular, they may not commute with each other.
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Definition. We will denote infinite-dimensional space g ⊗ Pol(λ, λ−1) with the Lie bracket
given by (6) by g̃A1,A2 and finite-dimensional Lie algebra g with the bracket [ , ]Ai

by gAi

Remark 2. Algebra g̃A1,A2 could also be realized in the space of special matrix-valued
functions of λ with an ordinary Lie bracket [ , ]. Nevertheless, we consider realization in the
space g ⊗ Pol(λ, λ−1) with the bracket (6) to be the most convenient.

Now we can introduce the convenient bases in the algebras g̃A1,A2 . Because we are dealing
with matrix Lie algebras g, we will denote their basic elements as Xij . Let Xm

ij ≡ Xij ⊗λm be
the natural basis in g̃A1,A2 . Commutation relations (6) in this basis have the following form:[

Xr
ij , X

m
kl

] =
∑
p,q

C
pq

ij,kl(A1)X
r+m
pq −

∑
p,q

C
pq

ij,kl(A2)X
r+m+1
pq , (7)

where C
pq

ij,kl(Ai) are the structure constants of the Lie algebras gAi
.

Remark 3. Note that contrary to the case of loop algebras our algebras g̃A1,A2 admit only
one type of decomposition g̃A1,A2 = g̃+

A1,A2
+ g̃

−
A1,A2

compatible with quasigrading, where the
subalgebras g̃

±
A1,A2

are defined in the natural way:

g̃+
A1,A2

= SpanK

{
Xm

ij

∣∣m � 0
}
, g̃

−
A1,A2

= SpanK

{
Xm

ij

∣∣m < 0
}
. (8)

Let us now find equivalences among the constructed Lie algebras. In particular, let us find
conditions when g̃A1,A2 is equivalent to the algebra g̃A ≡ g̃1,A introduced in our previous papers
[16–18]. All equivalences are understood in the sense of the isomorphisms of quasigraded Lie
algebras. The following proposition is true.

Proposition 2.2.

(i) The following isomorphisms hold: g̃
±
A1,A2

� g̃
∓
A2,A1

, g̃A1,A2 � g̃A2,A1 .
(ii) If there exists matrix C such that CA1C = A2 and C2 = 1 then g̃

±
A1,A2

� g̃
∓
A1,A2

.
(iii) If det A1 
= 0 or det A2 
= 0 then g̃A1,A2 � g̃A.

Remark 4. Item (iii) of the proposition means that in order for the algebra g̃A1,A2 not to be
equivalent to the algebra g̃A of [16, 18] matrices A1 and A2 should be degenerate. That is why
we will consider the case det Ai = 0 as the main case in this paper.

2.2. Coadjoint representation and its invariants

In this subsection, we define dual spaces, coadjoint representations and their invariants for the
Lie algebras g̃A1,A2 . At first, we explicitly describe the dual space g̃ ∗

A1,A2
of g̃A1,A2 . For this

purpose, we define the pairing between g̃A1,A2 and g̃ ∗
A1,A2

in the following way:

〈X,L〉 = resλ=0 Tr(X(λ)L(λ)). (9)

The generic element of the dual space g̃ ∗
A1,A2

with respect to this pairing is written as follows:

L(λ) =
∑
k∈Z

∑
i,j=1,n

l
(k)
ij λ−(k+1)X∗

ij , (10)

where l
(m)
ij are coordinate functions on g̃ ∗

A1,A2
. From the explicit form of the adjoint

representation (6) and the pairing (9) it is easy to show that the coadjoint action of g̃A1,A2

on g̃ ∗
A1,A2

has the form

ad∗
X(λ) ◦ L(λ) = A(λ)X(λ)L(λ) − L(λ)X(λ)A(λ), (11)

where X(λ), Y (λ) ∈ g̃A1,A2 , L(λ) ∈ g̃ ∗
A1,A2

,A(λ) = A1 − λA2.
Having the explicit form of the coadjoint action it is easy to deduce the next proposition:
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Proposition 2.3. Let L(λ) be the generic element of g̃ ∗
A1,A2

. Then functions

Im
k (L(λ)) = (1/m) resλ=0 λ−(k+1) Tr(L(λ)A(λ)−1)m (12)

are invariants of the coadjoint representation of the algebra g̃A1,A2 .

Remark 5. From the definition of the invariant functions it follows that in order to make
the algebra g̃A1,A2 possess infinitely many algebraically independent invariants of coadjoint
representation matrix A(λ) should be nondegenerate. This condition imposes additional
requirements on the matrices Ai .

Remark 6. In the case of nondegenerate matrices Ai expression A(λ)−1 in formula (12) can
be understood as the formal power series in the neighbourhood of zero or infinity:

A(λ)−1 = (
1 + A−1

1 A2λ + · · · )A−1
1 or A(λ)−1 = −λ−1A−1

2

(
1 + A1A

−1
2 λ−1 + · · · ).

(13)

In the case of degenerate matrices Ai (but nondegenerate A(λ)) one may still use formulae
(12) and (13) considering matrices Ai as the limiting cases of some nondegenerate matrices Ai

and then taking the corresponding limit in the suitably regularized expression for Im
k . Another

approach is to consider instead of integrals Im
k an equivalent family of integrals given by the

formula

Im′
k (L(λ)) = (1/m) resλ=0 λ−(k+1) detm A(λ)(Tr(L(λ)A(λ)−1)m (14)

which have no singularities for the degenerate Ai and yield the same algebra of invariants.
Subsequently we will use the first approach as more convenient.

2.3. Lie–Poisson structure

Let us introduce Poisson structure in the space g̃ ∗
A1,A2

using the above defined pairing 〈 , 〉. It
defines a Lie–Poisson (Kirillov–Kostant) bracket on P

(̃
g ∗

A1,A2

)
in the following standard way:

{f1(L(λ)), f2(L(λ))} = 〈L(λ), [∇f1(L(λ)),∇f2(L(λ))]A(λ)〉, (15)

where

∇fs(L(λ)) =
∑
k∈Z

n∑
i,j=1

∂fs

∂l
(k)
ij

Xk
ij , [∇f1,∇f2]A(λ) ≡ [∇f1,∇f2]A1 − λ[∇f1,∇f2]A2 .

From proposition 12 and standard considerations the next statement follows.

Proposition 2.4. Functions Im
k (L(λ)) are central for the Lie–Poisson bracket (15).

Let us explicitly calculate the Poisson bracket (15). It is easy to show that for the
coordinate functions l

(m)
ij these brackets will have the following form:{

l
(n)
ij , l

(m)
kl

} =
∑
p,q

C
pq

ij,kl(A1)l
(n+m)
pq −

∑
p,q

C
pq

ij,kl(A2)l
(n+m+1)
pq . (16)

Lie bracket (16) determines the structure of the Lie algebra isomorphic to g̃A1,A2 in the
space of linear functions

{
lnij

}
. That is why the corresponding Poisson algebra possesses a

decomposition into the direct sum of two Poisson subalgebras, or in other words subspaces(̃
g

±
A1,A2

)∗
are Poisson.
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3. Integrable hierarchies associated with algebras g̃A1, A2

In this section, we construct two infinite sets of mutually Poisson-commuting functions on the
Lie algebra g̃A1,A2 and Lax-type representation for the corresponding Hamiltonian equations.
We also derive zero-curvature equations as a compatibility condition of the above commuting
Hamiltonian flows and consider examples of the equations in partial derivatives from the
corresponding integrable hierarchies.

3.1. Infinite-component Hamiltonian systems on g̃ ∗
A1,A2

In this subsection, we construct Hamiltonian systems on the infinite-dimensional space g̃ ∗
A1,A2

possessing infinite number of independent, mutually commuting integrals of motion.
Let L±(λ) be the generic element of the space g̃

∓∗
A1,A2

:

L±(λ) ≡
∑

i,j=1,n

L±
ij (λ)Xji =

∑
k∈Z∓

∑
i,j=1,n

l
(k)
ij λ−(k+1)Xji .

Let us consider the restriction of the invariant functions
{
Im
k (L(λ))

}
onto these subspaces.

Note that although Poisson subspaces g̃
∓∗
A1,A2

are infinite dimensional, functions
{
Im
k (L±(λ))

}
are polynomials, i.e., after the restriction onto g̃

∓∗
A1,A2

no infinite sums appear in their explicit
expressions. Let us now consider functions Im

k (L±(λ)) as functions on the whole space g̃ ∗
A1,A2

.
We have two sets of Hamiltonians

{
Im+
k (L(λ))

}
and

{
Im−
k (L(λ))

}
on g̃ ∗

A1,A2
defined as follows:

Im±
k (L(λ)) ≡ Im

k (L±(λ)).

Hamiltonian flows corresponding to Hamiltonians Im±
k (L(λ)) are written in a standard way:

∂Lij (λ)

∂tm±
k

= {
Lij (λ), Im±

k (L(λ))
}
. (17)

The following theorem is true.

Theorem 3.1.

(i) Hamiltonian equations (17) are written in the generalized Lax form:

∂L(λ)

∂tm±
k

= ad∗
V m±

k (λ)
L(λ) = A(λ)V m±

k (λ)L(λ) − L(λ)V m±
k (λ)A(λ), (18)

where V m±
k (λ) = ∇Im±

k (L(λ)) ≡ ∑
s∈Z±

n∑
i,j=1

∂Im±
k

∂l
(s)
ij

Xs
ij .

(ii) The functions
{
Im±
k (L(λ))

}
form the commutative subalgebra in the algebra of polynomial

functions on g̃ ∗
A1,A2

:
{
Im±
k (L(λ)), I n±

l (L(λ))
} = {

Im∓
k (L(λ)), I n±

l (L(λ))
} = 0, i.e., time

flows defined by equations (17) (or (18)) mutually commute.

(iii) The functions I n±
l (L(λ)) are constant along all time flows: ∂In±

l

∂tm±
k

= ∂In±
l

∂tm∓
k

= 0.

The proof of this theorem repeats the proof of the analogous theorem for the case of ordinary
loop algebras (see [2] and references therein).

Remark 7. Because the subspaces
(̃
g

∓
A1,A2

)∗
are Poisson equations (17) generated by the

Hamiltonians Im±
k (L(λ)), could be restricted onto them, i.e., it is correct to consider the

following Hamiltonian equations:

∂L+
ij (λ)

∂tm+
k

= {
L+

ij (λ), Im
k (L+(λ))

}
,

∂L−
ij (λ)

∂tm−
k

= {
L−

ij (λ), Im
k (L−(λ))

}
. (19)
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In particular, the following corollary of theorem 3.1 holds.

Corollary 3.1.

(i) Hamiltonian equations (19) are written in the generalized Lax form:

∂L±(λ)

∂tm±
k

= A(λ)V m±
k (λ)L±(λ) − L±(λ)V m±

k (λ)A(λ), (20)

where V m±
k (λ) is defined as in theorem 3.1.

(ii) The functions
{
Im
k (L±(λ))

}
form a commutative subalgebra in the algebra of polynomial

functions on
(̃
g

∓
A1,A2

)∗
and corresponding time flows mutually commute.

(iii) The functions
{
Im
k (L±(λ))

}
are constant along time flows (19).

In other words, theorem 3.1 provides us with three types of infinite-component
Hamiltonian systems possessing infinite sets of commuting integrals of motion: two ‘small’
Hamiltonian subsystems on the subspaces

(̃
g

∓
A1,A2

)∗
with the sets of integrals

{
I n±
l

}
and the

‘large’ Hamiltonian system on g̃ ∗
A1,A2

with both sets of integrals
{
I n−
l

}
and

{
Im+
k

}
.

From theorem 3.1 it also follows that due to the commutativity of time flows it makes
sense to consider L(λ) as functions of independent time variables tm+

k and tn−
l and consider

simultaneously all equations (18) as a system of differential identities of the first order on all
the coordinate functions l

(s)
ij

(
tm+
k , tn−

l

)
that are true on the ‘Liouville torus’ which is the level set

of the integrals of motion:
{
I n
l (L+)

} = cn+
l , Im

k (L−) = cm−
k . From this system of differential

identities of the first order one can extract some finite subsystems of differential identities on
some finite subsets of the coordinate functions l

(s)
ij . These identities are the required integrable

equations in partial derivatives. In order to have a systematic procedure for obtaining such
equations from equations (18), it is better to consider equivalent system of equations instead
of (18). These will be zero-curvature equations with values in g̃A1,A2 .

3.2. Zero-curvature conditions associated with algebras g̃A1,A2

Considering the consistency conditions of the commuting Lax-type equations (18) it is possible
to prove the following theorem.

Theorem 3.2. Let infinite-dimensional Lie algebras g̃A1,A2 , g̃
±
A1,A2

, their dual spaces and
polynomial Hamiltonians Im

k (L±(λ)), I n
l (L±(λ)) on them be defined as in previous sections.

Then the system of consistent generalized Lax equations (18) is equivalent to the system of the
‘deformed’ zero-curvature equations:

∂∇Im
k (L±(λ))

∂tn±
l

− ∂∇I n
l (L±(λ))

∂tm±
k

+
[∇Im

k (L±(λ)),∇I n
l (L±(λ))

]
A(λ)

= 0, (21)

∂∇Im
k (L±(λ))

∂tn∓
l

− ∂∇I n
l (L∓(λ))

∂tm±
k

+
[∇Im

k (L±(λ)),∇I n
l (L∓(λ))

]
A(λ)

= 0. (22)

(Proof of this theorem repeats the proof of the analogous theorem for algebras g̃H (see [15]).)

Remark 8. Using the above-mentioned realizations of g̃A1,A2 ‘deformed’ zero-curvature
equations can be rewritten in the form of the standard zero-curvature equations, but in this
case corresponding U–V pairs will be more complicated and we will work with zero-curvature
equations in the ‘deformed’ form (21) and (22).
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The above theorem gives us possibility to distinguish three types of hierarchies, connected
with the algebras g̃

±
A1,A2

and g̃A1,A2 . Integrable hierarchies associated with the subalgebras
g̃

±
A1,A2

are described only by equations (21), while integrable hierarchies associated with g̃A1,A2

are described by both equations (21) and (22), reflecting the fact that we have in this case both
positive and negative flows. In other words, integrable hierarchies associated with the algebras
g̃

±
A1,A2

could be viewed as subhierarchies of the integrable hierarchy associated with algebra
g̃A1,A2 . Nevertheless they are completely self-contained and could be considered separately.
In particular, they do not depend on a ‘large’ algebra in which we embed corresponding
subalgebra g̃+

A1,A2
or g̃

−
A1,A2

.
For the case of integrable hierarchies, associated with algebras g̃

±
A1,A2

, a choice of the
one of the matrix gradients ∇Im

k to be the U operator yields fixation of dynamical variables
that coincide with its matrix elements. For the case of integrable systems, connected with the
algebras g̃A1,A2 there are two types of Hamiltonians and two types of flows. That is why in
this case the number of independent dynamical variables may be doubled: their role is played
by the matrix elements of two U operators: U+ = ∇Im

k (L+(λ)) and U− = ∇I n
l (L−(λ)), where

Hamiltonians Im
k (L+(λ)) and I n

l (L−(λ)) generate evolution with respect to ‘times’ x+ and
x−—‘space’ flows of the hierarchies associated with subalgebras g̃

±
A1,A2

.
The number of the dynamical variables for the chosen integrable hierarchy coincide with

the number of independent matrix elements of the U± operators, where U+ = ∇Im
k (L+(λ))

and U− = ∇I n
l (L−(λ)). In our case, when Im

k (L±(λ)) depends on the additional parameters
(matrix elements of the matrices Ai) we may decrease the number of dynamical variables
manipulated by these parameters (in particular tending some of them to zero). Hence, this
provides us with a simple procedure for the reduction of the number of functional degrees of
freedom. We will illustrate this in the next subsection on the g = so(n) example.

3.3. Integrable subhierarchy associated with subalgebra ˜so(n)
±
A1,A2

The aim of this subsection is a derivation of the equations of integrable hierarchy connected
with the algebra g̃+

A1,A2
, where g = so(n), matrices Ai are degenerate: det Ai = 0 and rank

Ai = n − 1. We will start our consideration with the nondegenerate case: rank Ai = n and
obtain the case rank Ai = n − 1 as its limit.

Let us now illustrate the procedure of obtaining integrable equations in the partial
derivatives starting from the Lie algebras g̃+

A1,A2
, where g and Ai are as described above.

For this purpose, we have to describe the set of commuting integrals on
(
s̃o(n)

+

A1,A2

)∗
. Let us

first note that the generic element of the dual space
(
s̃o(n)

+

A1,A2

)∗
has the following form:

L−(λ) = λ−1L(0) + λ−2L(1) + λ−3L(2) + λ−4L(3) + · · · , (23)

where L(k) ≡ ∑
i<j=1,n l

(k)
ij Xji . We will be interested in second-order integrals

(Hamiltonians). By very definition they are written as follows:

I 2−
k (L(λ)) = 1

2 resλ=0 λ−(k+1) Tr(L−(λ)A(λ)−1)2. (24)

In order for Hamiltonians I 2−
k to be polynomials we use the decomposition of the matrix

A(λ)−1 in the formal power series in a neighbourhood of infinity:

I 2−(L(λ)) = Tr
(
(λ−1L(0) + λ−2L(1) + · · ·)(1 + A1A

−1
2 λ−1 + · · · )A−1

2 λ−1
)2

. (25)

The commuting integrals of the series I 2(L−(λ)) contain the expression A−1
2 and in the limit

det A2 = 0 should be regularized in the appropriate way. We will calculate these Hamiltonians
for the case det A2 
= 0 and then consider the limit det A2 → 0.
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The simplest Hamiltonians of the set (25) are the functions I 2−
−4 (L(λ)) and I 2−

−5 (L(λ)):1

I 2−
−4 (L(λ)) = 1

2 Tr
(
A−1

2 L(0)
)2

,

I 2−
−5 (L(λ)) = Tr

(
A−1

2 L(0)A1A
−2
2 L(0)

)
+

(
A−1

2 L(1)A−1
2 L(0)

)
.

(26)

We will hereafter consider the case A1 = diag
(
a

(1)
1 , a

(1)
2 , . . . , a(1)

n

)
, A2 = diag

(
a

(2)
1 , a

(2)
2 , . . . ,

a
(2)
n−1, a

(2)
n

)
and take in the previous formulae limit a(2)

n → 0. Because Hamiltonians I 2−
−4 (L(λ))

and I 2−
−5 (L(λ)) are singular in this limit we have to rescale them, considering the limit a(2)

n → 0
of commuting integrals

I 2−′
−4 (L(λ)) ≡ a(2)

n I 2−
−4 (L(λ)), I 2−′

−5 (L(λ)) ≡ ((
a(2)

n

/
a(1)

n

)
I 2
−5(L

−(λ)) − I 2
−4(L

−(λ))
)
.

Taking this limit we obtain

I 2−′
−4 (L(λ)) =

∑
i<n

(
l
(0)
in

)2

a
(2)
i

,

I 2−′
−5 (L(λ)) = 1

a
(1)
n

∑
i<n

(
2
l
(1)
in l

(0)
in

a
(2)
i

+

(
l
(0)
in

)2
a

(1)
i(

a
(2)
i

)2

)
−

∑
0<i<j<n

(
l
(0)
ij

)2

a
(2)
i a

(2)
j

.

(27)

The corresponding matrix gradients are written as follows:

1

2
∇I 2−′

−4 =
∑
i<n

l
(0)
in

a
(2)
i

Xin,

1

2
∇I 2−′

−5 = 1

a
(1)
n

∑
i<n

(
λ

l
(0)
in

a
(2)
i

Xin +

(
l
(1)
in

a
(2)
i

+
a

(1)
i l

(0)
in(

a
(2)
i

)2

)
Xin

)
−

∑
i<j<n

l
(0)
ij

a
(2)
i a

(2)
j

Xij .

(28)

Let us take for the Hamiltonian that generates a space flow the function I 2−′
−4 . This

fixes our integrable hierarchy with U ≡ ∇I 2−′
−4 . Taking into account the explicit form of

∇I 2−′
−4 we obtain that the dynamical variables in the corresponding hierarchy are the functions

l
(0)
in , i ∈ 1, n − 1. Hence, by taking the limit a(2)

n → 0, we have decreased the number of
functional degrees of freedom from n(n − 1)/2 (number of the independent components of
∇I 2−

−4 ) to n − 1 (number of the independent components of ∇I 2−′
−4 ).

In order to obtain all equations of this hierarchy it is necessary to obtain the regularized
expression ∇Im−′

k for the all other Hamiltonians ∇Im−
k to express all coordinate functions

l
(k)
ij k � 0 via l

(0)
in and its derivatives with respect to the coordinate x and substitute them into

expression for ∇Im−′
k into the zero-curvature equation:

∂∇I 2−′
−4

∂tm
′

k

= ∂∇Im−′
k

∂x
− [∇I 2−′

−4 ,∇Im−′
k

]
A(λ)

. (29)

We will consider the simplest equation of the hierarchy (29) that corresponds to the time flow
of the Hamiltonian I 2−′

−5 , i.e., we will put V ≡ ∇I 2′
−5. The coordinate functions l

(0)
ij and l

(1)
in ,

where i, j ∈ 1, n − 1 enter in the explicit expression of the V operator (28). They should be
expressed via l

(0)
in and their derivatives in order to obtain a required equation on the dynamical

variables l
(0)
in . This can be achieved by decomposing both sides of equation (29) in the powers

of spectral parameter λ. Rescaling time variables x → 2x, t → 2t and introducing the

1 In the case of the nondegenerate matrices Ai corresponding matrix gradients produce ‘integrable anisotropic
deformation’ of the generalized Heisenberg magnet equations [15].
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following notation: m
(1)
i = l

(1)
in + a

(1)
i l

(0)
in

a
(2)
i

, we obtain that for the chosen U–V pair zero-curvature

equation (29) is equivalent to the following system of differential equations:

∂l
(0)
in

∂t
− ∂m

(1)
i

∂x
=

n−1∑
k=1

l
(0)
ik a

(1)
k l

(0)
kn(

a
(2)
k

)2 , (30)

∂l
(0)
in

∂x
=

n−1∑
k=1

l
(0)
ik l

(0)
kn

a
(2)
k

, (31)

∂l
(0)
ij

∂x
= a(1)

n

(
m

(1)
i l

(0)
jn − m

(1)
j l

(0)
in

)
. (32)

We will use equations (31) and (32) in order to express m
(1)
i and l

(0)
ij via dynamical variables l

(0)
jn

and their x derivatives. From these equations, it is easy to deduce that the following equalities
hold:

l
(0)
ij = ∂l

(0)
in

∂x
l
(0)
jn − ∂l

(0)
jn

∂x
l
(0)
in , (33)

m
(1)
i = 1

/
a(1)

n

∂2l
(0)
in

∂x2
+ c2(L

(0))l
(0)
jn , (34)

where c2(L
(0)) is some scalar function of the dynamical variables l

(0)
in . We determine the

explicit form of the function c2(L
(0)) using the fact that Hamiltonians I 2′

−4 and I 2′
−5 are constant

along all flows and we may put I 2′
−4 = 1, I 2′

−5 = 0. Using this and introducing vector

(
−→
l )i = l

(0)
in

/
a

(2)
i and matrices A′

i = diag
(
a

(i)
1 , a

(i)
2 , a

(1)
3 , . . . , a

(i)
n−1

)
we obtain

c2(
−→
l ) = 1

2
(
−→
l , A′

1
−→
l ) + 1/a(1)

n · 3

2

(
∂
−→
l

∂x
,A′

2
∂
−→
l

∂x

)
.

Using equality (33) we also deduce that

n−1∑
k=1

l
(0)
ik a

(1)
k l

(0)
kn

a
(2)
i

(
a

(2)
k

)2 = −1

2

∂(
−→
l , A′

1
−→
l )

∂x
(
−→
l )i + (

−→
l , A′

1
−→
l )

∂(
−→
l )i

∂x
.

As a result we obtain the following differential equation in the partial derivatives:

∂
−→
l

∂t
= 1

a
(1)
n

∂

∂x

(
∂2−→l
∂x2

+
3

2

(
∂
−→
l

∂x
,A′

2
∂
−→
l

∂x

)
−→
l

)
+

3

2
(
−→
l , A′

1
−→
l )

∂
−→
l

∂x
. (35)

In order to transform this equation to a more standard form it is necessary to introduce
new notation:

−→
s = (A′

2)
1/2−→l , J ≡ A′

1(A
′
2)

−1. Under such a replacement of variables the
constraint (

−→
l , A′

2
−→
l ) = 1 passes to the standard constraint (

−→
s ,

−→
s ) = 1 and equation (35)

to the higher Landau–Lifshitz equation:

∂
−→
s

∂t
= 1

a
(1)
n

∂

∂x

(
∂2−→s
∂x2

+
3

2

(
∂
−→
s

∂x
,
∂
−→
s

∂x

)
−→
s

)
+

3

2
(
−→
s , J

−→
s )

∂
−→
s

∂x
. (36)

Remark 9. In the case n = 4, this equation is the higher equation of the Landau–Lifshitz
hierarchy. For n > 4, this equation was first obtained in [12] using the technique of ‘dressing’

and the embedding of the (specially realized) algebra s̃o(n)
+

A into algebra so(n)(λ) of formal
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power series. Equation (36) was also obtained in our previous paper [18] using the algebra

s̃o(n)
+

A naturally embedded into algebra s̃o(n)A.
In the next subsection, we will obtain the simplest equation of ‘doubled’ Landau–Lifshitz

hierarchy. In order to do so it is necessary to employ neither the algebra of formal power series
nor the algebra s̃o(n)A but its generalization—Lie algebra s̃o(n)A1,A2

.

3.4. Integrable hierarchy associated with algebra ˜so(n)A1,A2

In this subsection, we will consider integrable hierarchies, admitting zero-curvature-type
representation with U–V pairs taking values in the algebra s̃o(n)A1,A2

. In order to obtain
‘double’ of Landau–Lifshitz hierarchies it is necessary to consider the case of the matrix A(λ)

formed by the degenerate matrices Ai , such that rank Ai = n − 1 but rank A(λ) = n. As in

the previous example of the hierarchies connected with s̃o(n)
±
A1,A2

we will first consider the
case of the nondegenerate matrices Ai : rank Ai = n and obtain the case rank Ai = n − 1 as
its limit.

Let us now illustrate the procedure of obtaining integrable equations in the partial
derivatives associated with algebras s̃o(n)A1,A2

. For this purpose, we have to describe the

set of commuting integrals on
(
s̃o(n)A1,A2

)∗
. The generic elements of the dual spaces to

subalgebras
(
s̃o(n)

−
A1,A2

)∗
and

(
s̃o(n)

+

A1,A2

)∗
have the following form:

L+(λ) = L(−1) + λL(−2) + λ2L(−3) + λ3L(−4) + · · · , (37)

L−(λ) = λ−1L(0) + λ−2L(1) + λ−3L(2) + λ−4L(3) + · · · , (38)

where L(±k) ≡ ∑
i<j=1,n l

(±k)
ij Xji . The second-order integrals (Hamiltonians) by very

definition are written as follows:

I 2±
k (L(λ)) = 1

2 resλ=0 λ−(k+1) Tr (L±(λ)A(λ)−1)2. (39)

Let us at first consider Hamiltonians I 2±
k in the case of the nondegenerate matrices A. In

order for Hamiltonians I 2±
k to be polynomials we will use two different decompositions of

the matrix A(λ)−1 in formal power series—in the neighbourhood of zero and infinity. The
corresponding Hamiltonians are calculated using their own decompositions:

I 2+
k (L(λ)) = 1

2 resλ=0 λ−(k+1) Tr
(
A−1

1

(
1 + A−1

1 A2λ + · · · )(L(−1) + λL(−2) + · · ·))2
, (40)

I 2−
k (L(λ)) = 1

2 resλ=0 λ−(k+1) Tr
((

1 + A1A
−1
2 λ−1 + · · ·)A−1

2 λ−1(λ−1L(0) + λ−2L(1) + · · ·))2
.

(41)

The simplest Hamiltonians of these sets are functions I 2−
−4 (L(λ)) and I 2+

0 (L(λ)):2

I 2−
−4 (L(λ)) = 1

2 Tr
(
A−1

2 L(0)
)2

, I 2+
0 (L(λ)) = 1

2 Tr
(
A−1

1 L(−1)
)2

. (42)

Without a loss of generality we will assume that matrices Ai are diagonal: A1 =
diag

(
a

(1)
1 , . . . , a(1)

n

)
, A2 = diag

(
a

(2)
1 , . . . , a(2)

n

)
and consider the limits a

(1)
1 → 0, a(2)

n → 0
that correspond to the simplest degeneration of the matrices Ai . Because Hamiltonians I 2−

−4

and I 2+
0 are singular in this limit we will rescale them and consider integrals a(2)

n I 2−
−4 and

2 In the case of the nondegenerate matrices Ai the corresponding matrix gradients produce anisotropic chiral field-type
equations [17].
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a
(1)
1 I 2+

0 instead. As a result we obtain the following Hamiltonians:

I 2−′
−4 (L(λ)) ≡ lim

a
(2)
n ,→0

a(2)
n I 2−

−4 = 1

2

∑
i<n

(
l
(0)
in

)2

a
(2)
i

,

(43)

I 2+′
0 (L(λ)) ≡ lim

a
(1)
1 →0

a
(1)
1 I 2+

0 = 1

2

∑
i>1

(
l
(−1)
1i

)2

a
(1)
i

.

Their matrix gradients are written as follows:

∇I 2−′
−4 =

∑
i<n

l
(0)
in

a
(2)
i

Xin, ∇I 2+′
0 = λ−1

∑
i>1

l
(−1)
1i

a
(1)
i

X1i . (44)

These are exactly U operators of two independent generalized Landau–Lifshitz hierarchies.
That is why we call this hierarchy to be ‘doubled’ generalized Landau–Lifshitz hierarchy.

The corresponding zero-curvature condition

∂∇I 2−′
−4

∂x−
− ∂∇I 2+′

0

∂x+
+

[∇I 2−′
−4 ,∇I 2+′

0

]
A(λ)

= 0, (45)

yields the following equations:

∂x+ l
(−1)
1i = −(

a
(1)
i

/
a

(2)
i

)
l
(−1)
1n l

(0)
in , ∂x− l

(0)
in = −a

(2)
i

/
a

(1)
i l

(0)
1n l

(−1)
1i , (46)

∂x+ l
(−1)
1n = a(1)

n

n−1∑
k=2

l
(−1)
1k l

(0)
kn

/
a

(2)
k , ∂x− l

(0)
1n = a

(2)
1

n−1∑
k=2

l
(−1)
1k l

(0)
kn

/
a

(1)
k . (47)

Taking into account that functions

I 2+′
0 (L+(λ)) = 1

2

∑
i>1

(
l
(−1)
1i

)2

a
(1)
i

= c−, I 2−′
−4 (L(λ)) = 1

2

n−1∑
i=1

(
l
(0)
in

)2

a
(2)
i

= c+

are constant along all time flows, we obtain that l
(−1)
1n , l

(0)
1n are expressed via l

(−1)
1i and l

(0)
in :

l
(−1)
1n = (

a(1)
n

)1/2

(
c− −

n−1∑
i=2

(
l
(−1)
1i

)2

a
(1)
i

)1/2

, l
(0)
1n = (

a
(2)
1

)1/2

(
c+ −

n−1∑
i=2

(
l
(0)
in

)2

a
(2)
i

)1/2

(48)

and equations (47) follows from equations (46).
Introducing for convenience the following (n − 2)-component vectors:

si
− = l

(−1)
in(

a
(1)
i

)1/2 , si
+ = l

(0)
in(

a
(2)
i

)1/2 , i ∈ 2, n − 1,

and rescaling variables x± we obtain that our equations acquire the following form:

∂x+

−→
s − = (c− − (

−→
s −,

−→
s −))1/2Ĵ 1/2−→s +, (49)

∂x−
−→
s + = (c+ − (

−→
s +,

−→
s +))

1/2Ĵ−1/2−→s −, (50)

where the (n − 2) × (n − 2) matrix Ĵ is defined as follows: Ĵ = diag
((

a
(2)
2

)−1
a

(1)
2 , . . . ,(

a
(2)
n−1

)−1
a

(1)
n−1

)
.

Remark 10. Note that the variables
−→
s − could be expressed via

−→
s + and its derivatives

with respect to ‘negative time’ x− using equation (50). As a result one obtains a system of
nonlinear differential equations of the second order on the vector

−→
s +. Such a procedure
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breaks the simple form of the obtained equations and we prefer to leave them in the form of
the systems (49) and (50).

Let us now consider the small n example of equations (49) and (50).

Example 1. Let n = 3. In this case, we obtain the following two equations:

∂x+s− = (c− − s2
−)1/2j 1/2s+, ∂x−s+ = (

c+ − s2
+

)1/2
j−1/2s−.

Making substitution of variables: s± = c± sin φ±, and rescaling variables x± we obtain

∂x+φ− = sin φ+, ∂x−φ+ = sin φ−.

Expressing φ− via φ+ and putting it into the first equation we finally obtain

∂2
x+x−φ+ = (1 − (∂x−φ+)

2)1/2 sin φ+. (51)

This is exactly the so-called ‘modified sine–Gordon equation’ discovered by Kruskal and
re-discovered later by Chen [19] (see also [20] and references therein).

Example 2. Let n = 4. In this case, equations (49) and (50) define ‘the first negative flow’ to
standard Landau–Lifshitz equations. They have the following form:

∂x+s
1− = (c− − ((s1

−)2 + (s2
−)2))1/2J

1/2
1 s1

+, ∂x−s1
+ = (

c+ − ((
s1

+

)2
+

(
s2

+

)2))1/2
J

−1/2
1 s1−,

∂x+s
2− = (c− − ((s1

−)2 + (s2
−)2))1/2J

1/2
2 s2

+, ∂x−s2
+ = (

c+ − ((
s1

+

)2
+

(
s2

+

)2))1/2
J

−1/2
2 s2−.

Adding the third component to the vectors
−→
s ±: s3

± = (
c± − ((

s1
±
)2

+
(
s2
±
)2))1/2

, rescaling one

of the ‘times’ x ′
− = (J1J2)

−1/2x− and making the following change of indices in vector
−→
s −:

s2
− ←→ s1

− we obtain that the above equations are written as follows:

∂x+s
1− = s3−J

1/2
2 s2

+, ∂x ′−s1
+ = s3

+J
1/2
2 s2−, (52)

∂x+s
2− = s3−J

1/2
1 s1

+, ∂x ′−s2
+ = s3

+J
1/2
1 s1−, (53)

∂x+s
3− = −(

J
1/2
2 s1−s2

+ + J
1/2
1 s2−s1

+
)
, ∂x ′−s3

+ = −(
J

1/2
2 s1

+s
2− + J

1/2
1 s2

+s
1−

)
. (54)

This system of equations coincides with the anisotropic chiral field equations of Cherednik
[21]:

∂−→s−
∂x+

= [−→s− × J̃ (−→s+ )],
∂−→s+

∂x ′−
= [−→s+ × J̃ (−→s−)],

where the diagonal matrix J̃ is defined as follows: J̃ = diag
(
J

1/2
1 ,−J

1/2
2 , 0

)
.

4. Conclusion and discussion

In this present paper, for all classical matrix Lie algebras g we have constructed a family of
quasigraded Lie algebras gA1,A2 numbered by two numerical matrices A1 and A2 to which the
Kostant–Adler scheme may be applied. Employing them we have obtained new hierarchies of
integrable nonlinear vector equations admitting zero-curvature representations. In particular,
we have obtained a vector generalization of the Landau–Lifshitz hierarchy and its extension
with negative flows, called the ‘doubled’ Landau–Lifshitz hierarchy.

Let us make several comments about a possible development and generalization of the
results of this paper. One of the simplest possibilities is to consider the constructed Lie
algebras with poles at the points λ = ν+, λ = ν− instead of the poles at the points λ = 0
and λ = ∞. Unfortunately, contrary to the case of ordinary loop algebras, change of the
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pole location will not lead to the appearance of new integrable hierarchies. Another, more
perspective development is a search for more complicated quasigraded Lie algebras that admit
the Kostant–Adler scheme. Work in this direction is now in progress.

Also a very interesting open problem consists in obtaining ‘non-stationary’ Hamiltonians
and ‘non-stationary’ (i.e., x dependent) Lie–Poisson structures that yield the constructed PDEs
as Hamiltonian equations in the field-theoretical sense. For the case of general n this problem
is complicated and the answer is still not known to the author.
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